Monday, 11 August 2008

China Confidential

Foreign Reporting and Analysis Since April 2005


Monday, August 11, 2008

 

King Coal Could Come Back Big-Time

Dateline USA....

King Coal is poised to make a big comeback in spite of the attempts by anti-industry, no-drill, dumbbell Democrats, led by global warming zealots Al Gore and Nancy Pelosi, to kill this awesome energy source.

Coal represents about 95 percent of fossil fuel reserves in the United States. The US has 275 billion tons of recoverable coal, which is 25 percent of the entire world's estimated coal resources, mines more than 1 billion tons of coal per year as compared to the 4 billion tons the rest of the world produces, and is commonly called the "Saudi Arabia of coal."

Not surprisingly, interest in coal liquefaction is growing. The process dates to 1923, and has been used successfully in Germany and South Africa to convert coal to gasoline and diesel fuel.

The US Department of Energy predicts the nation will produce 3.7 million barrels per day of fuel from coal by the year 2030.

The DOE also says coal gasification is "one of the most versatile and clean ways to convert coal into electricity, hydrogen, and other valuable energy products."

The DOE adds:

Coal gasification electric power plants are now operating commercially in the United States and in other nations, and many experts predict that coal gasification will be at the heart of future generations of clean coal technology plants.

Rather than burning coal directly, gasification (a thermo-chemical process) breaks down coal - or virtually any carbon-based feedstock - into its basic chemical constituents. In a modern gasifier, coal is typically exposed to steam and carefully controlled amounts of air or oxygen under high temperatures and pressures. Under these conditions, molecules in coal break apart, initiating chemical reactions that typically produce a mixture of carbon monoxide, hydrogen and other gaseous compounds.

Gasification, in fact, may be one of the best ways to produce clean-burning hydrogen for tomorrow's automobiles and power-generating fuel cells. Hydrogen and other coal gases can also be used to fuel power-generating turbines, or as the chemical "building blocks" for a wide range of commercial products. [> Read more about hydrogen production.]

The Energy Department's Office of Fossil Energy is working on coal gasifier advances that enhance efficiency, environmental performance, and reliability as well as expand the gasifier's flexibility to process a variety of coals and other feedstocks (including biomass and municipal/industrial wastes).

Environmental Benefits

The environmental benefits of gasification stem from the capability to achieve extremely low SOx, NOx and particulate emissions from burning coal-derived gases. Sulfur in coal, for example, is converted to hydrogen sulfide and can be captured by processes presently used in the chemical industry. In some methods, the sulfur can be extracted in either a liquid or solid form that can be sold commercially. In an Integrated Gasification Combined-Cycle (IGCC) plant, the syngas produced is virtually free of fuel-bound nitrogen. NOx from the gas turbine is limited to thermal NOx. Diluting the syngas allows for NOx emissions as low as 15 parts per million. Selective Catalytic Reduction (SCR) can be used to reach levels comparable to firing with natural gas if required to meet more stringent emission levels. Other advanced emission control processes are being developed that could reduce NOx from hydrogen fired turbines to as low as 2 parts per million.

The Office of Fossil Energy is also exploring advanced syngas cleaning and conditioning processes that are even more effective in eliminating emissions from coal gasifiers. Multi-contaminant control processes are being developed that reduce pollutants to parts-per-billion levels and will be effective in cleaning mercury and other trace metals in addition to other impurities.

Coal gasification may offer a further environmental advantage in addressing concerns over the atmospheric buildup of greenhouse gases, such as carbon dioxide. If oxygen is used in a coal gasifier instead of air, carbon dioxide is emitted as a concentrated gas stream in syngas at high pressure. In this form, it can be captured and sequestered more easily and at lower costs. By contrast, when coal burns or is reacted in air, 79 percent of which is nitrogen, the resulting carbon dioxide is diluted and more costly to separate.

Efficiency Benefits


Efficiency gains are another benefit of coal gasification. In a typical coal combustion-based power plant, heat from burning coal is used to boil water, making steam that drives a steam turbine-generator. In some coal combustion-based power plants, only a third of the energy value of coal is actually converted into electricity.

A coal gasification power plant, however, typically gets dual duty from the gases it produces. First, the coal gases, cleaned of impurities, are fired in a gas turbine - much like natural gas - to generate one source of electricity. The hot exhaust of the gas turbine, and some of the het generated in the gasification process, are then used to generate steam for use in a steam turbine-generator. This dual source of electric power, called a "combined cycle," is much more efficient in converting coal's energy into usable electricity. The fuel efficiency of a coal gasification power plant in this type of combined cycle can potentially be boosted to 50 percent or more.

Future concepts that incorporate a fuel cell or a fuel cell-gas turbine hybrid could achieve efficiencies nearly twice today's typical coal combustion plants. If any of the remaining heat can be channeled into process steam or heat, perhaps for nearby factories or district heating plants, the overall fuel use efficiency of future gasification plants could reach 70 to 80 percent.

Higher efficiencies translate into more economical electric power and potential savings for ratepayers. A more efficient plant also uses less fuel to generate power, meaning that less carbon dioxide is produced. In fact, coal gasification power processes under development by the Energy Department could cut the formation of carbon dioxide by 40 percent or more, per unit of output, compared to today's conventional coal-burning plant.

The capability to produce electricity, hydrogen, chemicals, or various combinations while eliminating nearly all air pollutants and potentially greenhouse gas emissions makes coal gasification one of the most promising technologies for energy plants of the future.

 

Russia Could Start a New Cuban Crisis

What has Washington wrought?

In response to meddling by the United States in the Caucasus and Baltic regions, a post-Communist, resurgent Russia is strengthening relations with Cuba, the Communist-run island state just 90 miles from Florida. 

A new Cuban crisis--recalling the missile crisis of 1962 that brought the US and Russia to the brink of nuclear war--is not only possible but actually likely if the current trend continues. The Russian military may make good on its recent threat to start using Cuba as a refueling stop for nuclear-capable jet bombers. 

Approaching the seventh anniversary of 9/11, with its economy in shambles and its armed forces still mired in Iraq, its ally, Afghanistan, in danger of again falling to the dreaded Taliban, and its implacable, missile-mad enemy, Islamist Iran, close to becoming a nuclear power, the last thing the US needs is another international crisis, let alone a superpower confrontation on its doorstep. 

Contrary to what some may have told you, international politics is still about power--i.e. the power relations among nations--and globalization and the Internet have not put an end to spheres of influence. It's time for Washington and Moscow to both take deep breaths and start talking to each other instead of at each other ... while ceasing to interfere in each other's spheres. 

-Andre Pachter
Copyright 2008